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SYMPLECTIC DIFFEOMORPHISMS WITH ORBITAL
SHADOWING

KEONHEE LEE* AND MANSEOB LEE**

ABSTRACT. We show that if a symplectic diffeomorphism has the
C'-robustly orbital shadowing property, then the diffeomorphism
is Anosov.

1. Introduction

The notion of pseudo orbits often appears in several methods of the
modern theory of dynamical system ([7]). Moreover, the pseudo orbit
shadowing property usually plays an important role in the investigation
of stability theory and ergodic theory. It is well-known that if a diffeo-
morphism f satisfies Axiom A and the strong trasversality condition,
then f has the shadowing property([7, 10]). Since such systems are
structurally stable, there exists C''-neighborhood U(f) of f such that
for any g € U(f), g has the shadowing property because g is conju-
gated to f. We say that f has the C'-robustly shadowing property if
there is a C'-neighborhood U(f) of f such that for any g € U(f), g
has the shadowing property. Sakai proved in [11] that if there is a C'-
neighborhood U(f) of f such that for any g € U(f), g has the shadowing
property, then f satisfies both Axiom A and the strong transversality
condition. Thus the C'-robustly shadowing property is charaterized
as the set of diffeomorphisms satisfying both Axiom A and the strong
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transversality condition. In [9] the authors showed that if a diffeomor-
phism has the C'-robustly orbital shadowing property, then it is struc-
turally stable. It is clear that the shadowing property is the orbital
shadowing property by definition, but the converse is not true. Indeed,
consider a diffeomorphism f of the two-dimensional torus T? studied in
[8]. The nonwandering set (f) consists of 4 hyperbolic fixed points,
Q(f) = {p1,p2,p3,pa}, where p; is a sink, py is a source, and pa, p3 are
saddle such that W*(p2) U{ps} = W"(ps) U{p2}. It is assumed that the
eigenvalues of D f(p2) are —p, v with 4 > 1,0 < v < 1, and the eigenval-
ues of D f(ps3) are —\, k with k > 1,0 < A < 1. It follows from the result
of [11] that f does not have the shadowing property. Plamenevskaya
showed that f has the weak shadowing property if and only if the value
log(\)/ log(w) is irrational. It has seen that f has the orbital shadowing

property([9]).

2. Basic definitions

Let M be a closed C*° 2n-dimensional manifold with Riemannian
structure and endowed with a symplectic form w, and let Diff,, (M) be
the set of symplectomorphisms, that is, of diffeomorphisms f defined on
M and such that

wg(v1,02) = Wr(r) (Do f(v1), Do f(v2)),

for x € M and vy,vo € T,M. Consider this space endowed with the
C! Whitney topology. It is well-known that Diff, (M) is a subset of
all C'-volume-preserving diffeomorphisms. Denote by d the distance
on M induced from a Riemannian metric || - || on the tangent bundle
TM. By the theorem of Darboux([5, Theorem 1.8]), there is an atlas
{¢! : U; — R*}, where Uj is an open set of M satisfying ¢fwy = w with
wo = Yo dyi A diynyi.

Let f € Diff,,(M). For § > 0, a sequence of points {z;}?_, (—oc0 <
a < b<o0)in M is called a d-pseudo orbit of f if d(f(x;),zit1) < 0
for all @ < ¢ < b— 1. For given z,y € M, we write z ~~ y if for any
§ > 0, there is a d-pseudo orbit {z;}?_ (a < b) of f such that z, = =
and xp = y. Let A C M be a closed f-invariant set. We say that f
has the shadowing property on A if for every € > 0 there is § > 0 such
that for any d-pseudo orbit {z;}!_ C A of f (—0 < a < b < ),
there is a point y € M such that d(fi(y),z;) < eforalla <i <b— 1.
Denote by Oy(x) the orbit {f"(z) : n € Z} for x € M. We say that
f has the weak shadowing property on A (or A is weak shadowable for
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f) if for any € > 0 there is § > 0 such that for any J-pseudo orbit
& = {xi}iez C A there exists a point y € M such that { C B(O(y)),
where Be(A) = {z € M : d(z, A) < €}. Note that every diffeomorphism
having the shadowing property has the weak shadowing property but
the converse is not true. Indeed, an irrational rotation map p on the
unit circle has the weak shadowing property but p does not have the
shadowing property. From now, we introduce the notion of the orbital
shadowing property. We say that f has the orbital shadowing property
on A (or A is orbital shadowable) if for any € > 0 there exists 6 > 0 such
that for any d-pseudo orbit & = {z;}iez C A, we can find a point y € M
such that

dH(Of<y)7 g) < €,

where A is the closure of a set A, and dy is the Hausdorff distance on
the set of compact subsets of M. Actually, this means that

Of(y) € Be(§) and § C Be(Oy(y)),

where B¢(A) denotes the e-neighborhood of a set A € M. We say
that f has the Cl-robustly orbitally shadowing property if there is a
C'-neighborhood U(f) C Diff,,(M) of f such that for any symplecto-
morphism g € U(f), g has the orbital shadowing property. We denote
by OS, (M) the open subset of C''-robustly orbitally shadowing sym-
plectomorphisms in M. Note that f has the orbital shadowing property
if and only if f™ has the orbital shadowing property, for all n € Z. We
say that A is hyperbolic if the tangent bundle T M has a D f-invariant
splitting E° @ E" and there exist constants C' > 0 and 0 < A < 1 such
that
IDef"ls ]l < CX" and Dy f [yl < CX"

forallz € A and n > 0.

Recently, Lee and Lee [4] proved that C!'-robustly orbital shadow-
ing in volume preserving diffeomorphisms is Anosov. In this paper, a
different approach must be used for volume preserving difffeomphisms.
We study a symplectic diffeomorphism and orbital shadowing. Very
recently, in [1], Bessa proved that if a symplectic diffeomprphism has
the C'-stably shadowing property, then the diffeomorphism is Anosov.
Bessa and Vaz [2] proved that if a symplectic diffeomprphism has the
C'-stably weakly shadowing property, then M admits a partially hyper-
bolic splitting. In this paper, the following fact is the main result.

THEOREM 2.1. If f € Diff,, (M) has the C!-robustly orbital shadow-
ing property, then f is Anosov.
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3. Proof of Theorem 2.1

Let M be as before, and let f € Diff,,(M). Then the following is
symplectic version of Franks’ Lemma.

LeEMMA 3.1. [3, Lemma 5.1] Let f € Diff,,(M) and U(f) be given.
Then there are 6o > 0 and Uy(f) C U(f) such that for any g € Up(f),
a finite set {x1,x2,...,2z,}, a neighborhood U of {x1,xs,...,z,} and
symplectic maps L; : Tpy; M — T,y M satistying || L; — Dg(z;)|| < do for
all 1 <i <n, there are eg > 0 and g € U(f) such that

(a) g(x) = g(z) if z € M\U,
(b) g(x) = @g(a;) © Li 0 93 (x) if © € Bey(as),
where Be,(z;) is the €y-neighborhood of x;.

A periodic point for f is a point p € M such that f®)(p) = p, where
7(p) is the minimum period of p. We say that a periodic point is elliptic
if D, f™®) has one non real eigenvalues of norm one, and if for a periodic
point p of period m(p) the tangent map D, f™®) has exactly 2k simple
non-real eigenvalues of norm 1 and the other ones have norm different
from 1, then we say that p is a k-elliptic periodic point. In dimension
2, then 1-elliptic periodic points are actually elliptic. We say that p is
is hyperbolic if Df™®) has no norm one eigenvalue. We say that f is
in F,(M) if there exists a neighborhood U(f) of f in Diff, (M) such
that for any g € U(f), every periodic point of g is hyperbolic. To prove
Theorem 2.1, we need the following Lemma.

LEMMA 3.2. [6] If f € F,, the f is Anosov.

By a result of Newhouse [6] if the symplectic diffeomorphisms is not
Anosov then 1-elliptic points can be created by an arbitrary small C'-
perturbations of the symplectic diffeomorphism. The following facts
enough to prove Theorem 2.1 by Lemma 3.2.

LEMMA 3.3. Let f € OS,(M), and Up(f) C Diff,(M) be given by
Lemma 3.1 with respect to Uy(f). Then for any g € U(f), g does not
have elliptic points.

Proof. We will derive a contradiction. Suppose that there is a g €
Uo(f) such that g have a periodic elliptic point p. To simplify, we may
assume that g(p) = p. Then D,g has n pairs of non-real eigenvalues,
that is, [z;] = [z5| = 1,7 =1,...,n with T,M = Eli & ... & El" and
dimEI’;Ji =2,i=1,...,n. By Lemma 3.1, there are &« > 0 and g1 € U(f)
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such that

2) = J Pap) © Dpg o %f(@ if z € Ba(p),
gi(w) = { () if 2 ¢ Bia(p).

Now, we consider the case Ezgl(a) other case is similar. Since p is
nonhyperbolic for g, by our construction, we may assume that there
is [ > 0 such that D,g}(v) = v for any v € El(a) n g, (Ba(p)). Take
v E Eﬁl(a) such that ||v|| = a/4. Then we can find a small arc Z,, =
pp({tv:1 <t <1+a/4}) C gp(Ba(p)) such that (i) gi(Z,) Ngi(Z,) = 0
if 0 <i#j<l—1,and (ii) ¢}(Z,) = Tp, that is, g}|7, is the identity
map. Then we can choose 0 < ¢ < «/4 sufficiently small such that
Be(¢i(Z,)) N Be(g](Z,)) = D forall 1 <i#j<l—1Let 0 <5 <e
be the number of the definition of the orbital shadowing property of g;
for e. Now we construct a d-pseudo orbit & = {z;};ez C Z, as follows;
(i) we choose a finite pseudo orbit {v;}¥_, C {tv:1 <t < (1 + a/4)}
for some k£ > 0 such that vy = (1 + a/4)v and |v; — vi41| < 6 for all
0 < i < k— 1. Then, we get that (i) ¢¢(p,(v)) = x; for i < 0, (ii)
g1 (ep(vi)) = Tpisy = xj, for 0 <m < k—1,0 < j <1 —1, and (iii)
zi = g7 (@, (v;)) for k > lk. Thus € = {x;}iez C I, is a d-pseudo orbit
of g1. Since g1 has the orbital shadowing property, gll has the orbital
shadowing property. For simplify, we assume that g} = g;. Since g; has
the orbital shadowing property, we can choose a point y € M such that

§ C Be(Oy, (y)) and Of(y) C Be(£)-

Since g1 has the orbital shadowing property, we consider two cases
(i) a shadowing point y € Z,,, and (ii) a shadowing point y € M \ Z,,.

First case, let y € 7. Since g1|z, is the identity map, for all n € Z,
g7 (y) = y. Then we can find j € Z such that

d(Og, (y),xj) = d(y, z;) > €.

This is a contradiction.

Finally, let y € M \ Z, such that y € gop(Eﬁi(a)) N Ba(p(= z0))
for i = 2,...,n. Then we may assume that there are m;(the minimum
number) such that D,g7" (v) = v for any v € Eﬁi(a)) N @, (Balp(=
%0))),i = 2,...,n. Let K = lem{m,; : ¢ = 2,...,n}. Here lcm is the
lowest common multiple. To simplify, we assume that go = ¢g&. Then
we can see that gb(y) € Be(zg) for all i € Z, and since Dpg{" (v) = v
for any v € Eﬁi ()N go;l(Ba(p)),i =2,...,n, by the above argument,
there is j € Z such that d(y,z;) > e. This is a contradiction. O
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End of the proof of Theorem 2.1. Let U(f) be given by the definition of
the C'-robustly orbital shadowing property. Suppose that f & F,(M).
Then there is g € Up(f) C U(f) such that g have a periodic elliptic point
p. By Lemma 3.3, g does not have a periodic elliptic point. This is a
contradiction. Thus, if f € OS,(M) then f € F,(M). By Lemma 3.2,
f is Anosov. O
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